Sparse Recovery with Pre-Gaussian Random Matrices

نویسندگان

  • Simon Foucart
  • Ming-Jun Lai
چکیده

For an m × N underdetermined system of linear equations with independent pre-Gaussian random coefficients satisfying simple moment conditions, it is proved that the s-sparse solutions of the system can be found by `1-minimization under the optimal condition m ≥ c s ln(eN/s). The main ingredient of the proof is a variation of a classical Restricted Isometry Property, where the inner norm becomes the `1-norm and where the outer norm depends on the probability distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonuniform Sparse Recovery with Gaussian Matrices

Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incomplete information. Efficient recovery methods such as l1-minimization find the sparsest solution to certain systems of equations. Random matrices have become a popular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such matrices. In this note we f...

متن کامل

Sure independence screening and compressed random sensing

Compressed sensing is a very powerful and popular tool for sparse recovery of high dimensional signals. Random sensing matrices are often employed in compressed sensing. In this paper we introduce a new method named aggressive betting using sure independence screening for sparse noiseless signal recovery. The proposal exploits the randomness structure of random sensing matrices to greatly boost...

متن کامل

The Restricted Isometry Property for Random Block Diagonal Matrices

In Compressive Sensing, the Restricted Isometry Property (RIP) ensures that robust recovery of sparsevectors is possible from noisy, undersampled measurements via computationally tractable algorithms. Itis by now well-known that Gaussian (or, more generally, sub-Gaussian) random matrices satisfy the RIPunder certain conditions on the number of measurements. Their use can be limi...

متن کامل

Analysis $\ell_1$-recovery with frames and Gaussian measurements

This paper provides novel results for the recovery of signals from undersampled measurements based on analysis `1-minimization, when the analysis operator is given by a frame. We both provide so-called uniform and nonuniform recovery guarantees for cosparse (analysissparse) signals using Gaussian random measurement matrices. The nonuniform result relies on a recovery condition via tangent cones...

متن کامل

Analysis ℓ1-recovery with frames and Gaussian measurements

This paper provides novel results for the recovery of signals from undersampled measurements based on analysis `1-minimization, when the analysis operator is given by a frame. We both provide so-called uniform and nonuniform recovery guarantees for cosparse (analysissparse) signals using Gaussian random measurement matrices. The nonuniform result relies on a recovery condition via tangent cones...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009